18. Asteroids
Overview: Structure

Inner system: terrestrial planets, asteroids.

Outer system: giant planets and moons, “KBOs”.

Oort Cloud: comets.
Samples From the Asteroid Belt

Primitive meteorites are relics of the solar system’s formation, 4.6 Gyr old.

Processed meteorites come from differentiated asteroids, later broken up by collisions.
Element Abundances
Eros

\[a = 1.5 \text{AU}, \quad e = 0.22 \]
\[34 \times 11 \times 11 \text{ km} \]

S-type
Density = 2700 kg m\(^{-3}\)
\[P_{\text{rot}} = 5 \text{ hr} \]

Disc. 1898 (Carl Witt)
V \sim 8.1 \text{ mag (binoculars)}

Visited by NEAR-Shoemaker probe
Mission to Eros
Asteroid Light Curves
Some asteroids are **rubble piles**: loose collections of fragmented rock held together by self-gravity.
Some small asteroids rotate so fast that they must be **monoliths** held together by material strength.
Giant Asteroids
Giant Asteroids

Large asteroids are complex objects which appear to have differentiated.
Belt Structure

- Inner Belt: $a < 2.5$ AU
- Mid Belt: 2.5 AU $< a < 2.8$ AU
- Outer Belt: $a > 2.8$ AU
Kirkwood Gaps

Resonances with Jupiter group asteroids by orbit period; period determines semi-major axis (Kepler III: $P^2 = a^3$).
Trojan Asteroids
Orbits starting near L₄

$m_a/m_b = 49$
Orbits starting near L_1.

\[\frac{m_a}{m_b} = 49 \]
Hilda Asteroids

2:3 MMR; stable since they avoid Jupiter ($e \sim 0.3$).

Small inclinations ($i \approx 20^\circ$).
Asteroid Families

Many asteroids are members of families; they have similar orbits and compositions (indicated by colors).

Inner belt asteroids (left) and families (right).
Origin of Families

Fragments are scattered on similar orbits.
A Suspected Asteroid Collision Leaves Odd X-Pattern of Trailing Debris